Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24595, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304823

RESUMO

Nearly all expression vectors currently available for Trypanosoma cruzi were conceived to produce a single primary transcript containing the genes of interest along with those that confer antibiotic resistance. However, since each messenger RNA (mRNA) matures separately, drug selection will only guarantee the expression of those derived from the selectable marker. Therefore, commonly a considerable fraction of the cells recovered after selection with these expression vectors, although resistant do not express the protein of interest. Consequently, in order to counteract this disadvantage, we developed vectors with an alternative arrangement in which the gene of interest and antibiotic resistance are fused sharing the same mRNA. To test this configuration, we included the coding sequence for the green fluorescent protein (mEGFP) linked to the one conferring neomycin resistance (Neo). Additionally, to allow for the production of two independent proteins the sequence for a Thosea asigna virus self-cleaving 2A peptide (T2A) was inserted in-between. Cells obtained with these vectors displayed higher mEGFP expression levels with more homogeneous transgenic parasite populations than those transfected with more conventional independent mRNA-based alternatives. Moreover, as determined by Western blot, 2A mediated fusion protein dissociation occurred with high efficiency in all parasite stages. In addition, these vectors could easily be transformed into endogenous tagging constructs that allowed the insertion, by ends-in homologous recombination, of a hemagglutinin tag (HA) fused to the actin gene. The use of 2A self-cleaving peptides in the context of single mRNA vectors represents an interesting strategy capable of improving ectopic transgene expression in T. cruzi as well as providing a simple alternative to more sophisticated methods, such as the one based on CRISPR/Cas9, for the endogenous labeling of genes.

2.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271348

RESUMO

Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".


Assuntos
Peptídeo Hidrolases/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Tripanossomíase Africana/genética , Animais , Catepsina B/genética , Catepsina B/isolamento & purificação , Bovinos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/uso terapêutico , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Proteínas de Protozoários/química , Proteínas de Protozoários/uso terapêutico , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/patogenicidade , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade , Tripanossomíase Africana/enzimologia , Tripanossomíase Africana/parasitologia
3.
PLoS Negl Trop Dis ; 13(7): e0007560, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329594

RESUMO

Enzymes of the M32 family are Zn-dependent metallocarboxypeptidases (MCPs) widely distributed among prokaryotic organisms and just a few eukaryotes including Trypanosoma brucei and Trypanosoma cruzi, the causative agents of sleeping sickness and Chagas disease, respectively. These enzymes are absent in humans and several functions have been proposed for trypanosomatid M32 MCPs. However, no synthetic inhibitors have been reported so far for these enzymes. Here, we present the identification of a set of inhibitors for TcMCP-1 and TbMCP-1 (two trypanosomatid M32 enzymes sharing 71% protein sequence identity) from the GlaxoSmithKline HAT and CHAGAS chemical boxes; two collections grouping 404 compounds with high antiparasitic potency, drug-likeness, structural diversity and scientific novelty. For this purpose, we adapted continuous fluorescent enzymatic assays to a medium-throughput format and carried out the screening of both collections, followed by the construction of dose-response curves for the most promising hits. As a result, 30 micromolar-range inhibitors were discovered for one or both enzymes. The best hit, TCMDC-143620, showed sub-micromolar affinity for TcMCP-1, inhibited TbMCP-1 in the low micromolar range and was inactive against angiotensin I-converting enzyme (ACE), a potential mammalian off-target structurally related to M32 MCPs. This is the first inhibitor reported for this family of MCPs and considering its potency and specificity, TCMDC-143620 seems to be a promissory starting point to develop more specific and potent chemical tools targeting M32 MCPs from trypanosomatid parasites.


Assuntos
Carboxipeptidases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Descoberta de Drogas/métodos , Fluorescência , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Parasita , Humanos , Concentração Inibidora 50 , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/parasitologia
4.
Curr Med Chem ; 26(36): 6672-6686, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31284853

RESUMO

Chagas disease is a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. The disease is endemic in Latin America with about 6 million people infected and many more being at risk. Only two drugs are available for treatment, Nifurtimox and Benznidazole, but they have a number of side effects and are not effective in all cases. This makes urgently necessary the development of new drugs, more efficient, less toxic and affordable to the poor people, who are most of the infected population. In this review we will summarize the current strategies used for drug discovery considering drug repositioning, phenotyping screenings and target-based approaches. In addition, we will describe in detail the considerations for setting up robust enzymatic assays aimed at identifying and validating small molecule inhibitors in high throughput screenings.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas/métodos , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Cisteína Endopeptidases , Reposicionamento de Medicamentos , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
5.
PLoS One ; 13(10): e0205527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308039

RESUMO

Nowadays, most reverse genetics approaches in Trypanosoma brucei, a protozoan parasite of medical and veterinary importance, rely on pre-established cell lines. Consequently, inducible experimentation is reduced to a few laboratory strains. Here we described a new transgene expression system based exclusively on endogenous transcription activities and a minimum set of regulatory components that can easily been adapted to different strains. The pTbFIX vectors are designed to contain the sequence of interest under the control of an inducible rRNA promoter along with a constitutive dicistronic unit encoding a nucleus targeted tetracycline repressor and puromycin resistance genes in a tandem "head-to-tail" configuration. Upon doxycycline induction, the system supports regulatable GFP expression (170 to 400 fold) in both bloodstream and procyclic T. brucei forms. Furthermore we have adapted the pTbFIX plasmid to perform RNAi experimentation. Lethal phenotypes, including α-tubulin and those corresponding to the enolase and clathrin heavy chain genes, were successfully recapitulated in procyclic and bloodstream parasites thus showing the versatility of this new tool.


Assuntos
Técnicas Genéticas , Trypanosoma brucei brucei , Linhagem Celular , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Ativação Transcricional , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
FEBS J ; 285(6): 1097-1110, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363267

RESUMO

Metacaspases, distant relatives of metazoan caspases, have been shown to participate in programmed cell death in plants and in progression of the cell cycle and removal of protein aggregates in unicellular eukaryotes. However, since natural proteolytic substrates have scarcely been identified to date, their roles in these processes remain unclear. Here, we report that the DNA-damage inducible protein 1 (Ddi1) represents a conserved protein substrate for metacaspases belonging to divergent unicellular eukaryotes (trypanosomes and yeasts). We show that although the recognized cleavage sequence is not identical among the different model organisms tested, in all of them the proteolysis consequence is the removal of the ubiquitin-associated domain (UBA) present in the protein. We also demonstrate that Ddi1 cleavage is tightly regulated in vivo as it only takes place in yeast when calcium increases but under specific metabolic conditions. Finally, we show that metacaspase-mediated Ddi1 cleavage reduces the stability of this protein which can certainly impact on the many functions ascribed for it, including shuttle to the proteasome, cell cycle control, late secretory pathway regulation, among others.


Assuntos
Cálcio/metabolismo , Caspases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Mol Biochem Parasitol ; 219: 10-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246805

RESUMO

Metallocarboxypeptidases (MCPs) of the M32 family, while broadly distributed among prokaryotic organisms, have so far been only found in a few eukaryotes including trypanosomatids. Among these organisms are human and animal pathogens of medical relevance such as Trypanosoma brucei and Trypanosoma cruzi, the respective causative agents of sleeping sickness and Chagas disease. The M32 MCP orthologues found in these parasites share 72% protein sequence identity. They also present a cytosolic localization, a similar pattern of expression and a marked preference for Arg/Lys residues at P1'. To further explore MCPs substrate specificity beyond the S1' subsite, we employed four positional scanning synthetic combinatorial libraries (PS-SC) of fluorescence resonance energy transfer (FRET) peptides. Our results indicated that the T. brucei enzyme has a restricted selectivity for Phe in P1 position compared to T. cruzi MCP-1, which presented a wider range of substrate acceptance. The S2, S3 and S4 subsites, on the other hand, could accommodate a broad range of residues. On the basis of these results, we synthesized for each enzyme a series of FRET substrates which contained the most favourable residues in every position. In particular, for both MCPs acting on FRET pentapeptide substrates, catalytic efficiencies were ∼100 times higher compared with previously described chromogenic substrates. In fact, the fluorogenic peptide Abz-LLKFK(Dnp)-OH (Abz = ortho-aminobenzoic acid; Dnp = 2, 4-dinitrophenyl) described here can be used to monitor accurately TbMCP-1 activity in parasite cell-free extracts. These results provide valuable insights to develop selective substrates and inhibitors, to further understand the mechanisms and functions of M32 MCPs.


Assuntos
Carboxipeptidases/metabolismo , Metaloendopeptidases/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Especificidade por Substrato
8.
Mol Biochem Parasitol ; 184(2): 63-70, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575602

RESUMO

Metallocarboxypeptidases (MCP) of the M32 family of peptidases have been identified in a number of prokaryotic organisms but they are absent from eukaryotic genomes with the remarkable exception of those of trypanosomatids. The genome of Trypanosoma brucei, the causative agent of Sleeping Sickness, encodes one such MCP which displays 72% identity to the characterized TcMCP-1 from Trypanosoma cruzi. As its orthologue, TcMCP-1, Trypanosoma brucei MCP is a cytosolic enzyme expressed in both major stages of the parasite. Purified recombinant TbMCP-1 exhibits a significant hydrolytic activity against the carboxypeptidase B substrate FA (furylacryloil)-Ala-Lys at pH 7.0-7.8 resembling the T. cruzi enzyme. Several divalent cations had little effect on TbMCP-1 activity but increasing amounts of Co(2+) inhibited the enzyme. Despite having similar tertiary structure, both protozoan MCPs display different substrate specificity with respect to P1 position. Thus, TcMCP-1 enzyme cleaved Abz-FVK-(Dnp)-OH substrate (where Abz: o-aminobenzoic acid and Dnp: 2,4-dinitrophenyl) whereas TbMCP-1 had no activity on this substrate. Comparative homology models and sequence alignments using TcMCP-1 as a template led us to map several residues that could explain this difference. To verify this hypothesis, site-directed mutagenesis was undertaken replacing the TbMCP-1 residues by those present in TcMCP-1. We found that the substitution A414M led TbMCP-1 to gain activity on Abz-FVK-(Dnp)-OH, thus showing that this residue is involved in specificity determination, probably being part of the S1 sub-site. Moreover, the activity of both protozoan MCPs was explored on two vasoactive compounds such as bradykinin and angiotensin I resulting in two different hydrolysis patterns.


Assuntos
Carboxipeptidases/química , Metaloproteínas/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/biossíntese , Carboxipeptidases/genética , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Dipeptídeos/química , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Metaloproteínas/antagonistas & inibidores , Metaloproteínas/biossíntese , Metaloproteínas/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Inibidores de Proteases/química , Proteólise , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Elementos de Transição/química
9.
Biochim Biophys Acta ; 1824(1): 195-206, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21621652

RESUMO

Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca(2+)-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Assuntos
Apoptose , Autofagia/fisiologia , Sistema Digestório/enzimologia , Peptídeo Hidrolases/fisiologia , Trypanosoma cruzi/enzimologia , Fatores de Virulência/fisiologia , Animais , Apoptose/genética , Apoptose/imunologia , Apoptose/fisiologia , Autofagia/genética , Morte Celular/genética , Morte Celular/fisiologia , Sistema Digestório/metabolismo , Humanos , Camundongos , Modelos Biológicos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Mol Microbiol ; 70(4): 853-66, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18793339

RESUMO

Trypanosoma cruzi is the aetiological agent of Chagas' disease, a chronic infection that affects millions in Central and South America. Proteolytic enzymes are involved in the development and progression of this disease and two metallocarboxypeptidases, isolated from T. cruzi CL Brener clone, have recently been characterized: TcMCP-1 and TcMCP-2. Although both are cytosolic and closely related in sequence, they display different temporary expression patterns and substrate preferences. TcMCP-1 removes basic C-terminal residues, whereas TcMCP-2 prefers hydrophobic/aromatic residues. Here we report the three-dimensional structure of TcMCP-1. It resembles an elongated cowry, with a long, deep, narrow active-site cleft mimicking the aperture. It has an N-terminal dimerization subdomain, involved in a homodimeric catalytically active quaternary structure arrangement, and a proteolytic subdomain partitioned by the cleft into an upper and a lower moiety. The cleft accommodates a catalytic metal ion, most likely a cobalt, which is co-ordinated by residues included in a characteristic zinc-binding sequence, HEXXH and a downstream glutamate. The structure of TcMCP-1 shows strong topological similarity with archaeal, bacterial and mammalian metallopeptidases including angiotensin-converting enzyme, neurolysin and thimet oligopeptidase. A crucial residue for shaping the S(1') pocket in TcMCP-1, Met-304, was mutated to the respective residue in TcMCP-2, an arginine, leading to a TcMCP-1 variant with TcMCP-2 specificity. The present studies pave the way for a better understanding of a potential target in Chagas' disease at the molecular level and provide a template for the design of novel therapeutic approaches.


Assuntos
Carboxipeptidases/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carboxipeptidases/genética , Domínio Catalítico , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Mutação Puntual , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação
11.
Biochem J ; 401(2): 399-410, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17007610

RESUMO

MCPs (metallocarboxypeptidases) of the M32 family of peptidases have been identified in a number of prokaryotic organisms, and only a few of them have been characterized biochemically. Members of this family are absent from eukaryotic genomes, with the remarkable exception of those of trypanosomatids. The genome of the CL Brener clone of Trypanosoma cruzi, the causative agent of Chagas' disease, encodes two such MCPs, with 64% identity between them: TcMCP-1 and TcMCP-2. Both genes, which are present in a single copy per haploid genome, were expressed in Escherichia coli as catalytically active polyHis-tagged recombinant enzymes. Despite their identity, the purified TcMCPs displayed marked biochemical differences. TcMCP-1 acted optimally at pH 6.2 on FA {N-(3-[2-furyl]acryloyl)}-Ala-Lys with a K(m) of 166 muM. Activity against benzyloxycarbonyl-Ala-Xaa substrates revealed a P1' preference for basic C-terminal residues. In contrast, TcMCP-2 preferred aromatic and aliphatic residues at this position. The K(m) value for FA-Phe-Phe at pH 7.6 was 24 muM. Therefore the specificities of both MCPs are complementary. Western blot analysis revealed a different pattern of expression for both enzymes: whereas TcMCP-1 is present in all life cycle stages of T. cruzi, TcMCP-2 is mainly expressed in the stages that occur in the invertebrate host. Indirect immunofluorescence experiments suggest that both proteins are localized in the parasite cytosol. Members of this family have been identified in other trypanosomatids, which so far are the only group of eukaryotes encoding M32 MCPs. This fact makes these enzymes an attractive potential target for drug development against these organisms.


Assuntos
Carboxipeptidases/isolamento & purificação , Carboxipeptidases/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Cátions Bivalentes/farmacologia , Clonagem Molecular , Dimerização , Estabilidade Enzimática , Temperatura Alta , Cinética , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Frações Subcelulares/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...